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A scanning lidar, a relatively new type of sensor which INTRODUCTION
explicitly measures canopy height, was used to measure Structural descriptions of forests are crucial to under-
structure of conifer forests in the Pacific Northwest. standing how forest ecosystems function. In particular,
SLICER (Scanning Lidar Imager of Canopies by Echo Re- information on broad-scale patterns of mass and vertical
covery), an airborne pulsed laser developed by NASA canopy structure would help advance studies of the global
which scans a swath of five 10-m diameter footprints along C cycle (Post, 1993), forest productivity (Ryan and
the aircraft’s flightpath, captures the power of the re- Yoder, 1997), use of forest canopy habitats by birds
flected laser pulse as a function of height from the top of (MacArthur, 1958), arboreal mammals (Carey, 1996), and
the canopy to the ground. Ground measurements of for- arthropods (Schowalter, 1995), interactions between for-
est stand structure were collected on 26 plots with coinci- ests and streams (Gregory et al., 1991), and prediction of
dent SLICER data. Height, basal area, total biomass, and the behavior of wildfires in the canopy (Rothermel, 1991).
leaf biomass as estimated from field data could be pre- Although fine-scale studies have demonstrated the in-
dicted from SLICER-derived metrics with r2 values of fluence of structural characteristics on function, applying
0.95, 0.96, 0.96, and 0.84, respectively. These relation- this knowledge at broad scales has been problematical
ships were strong up to a height of 52 m, basal area of because information on broad-scale patterns of vertical
132 m2/ha and total biomass of 1300 Mg/ha. In light of canopy structure has been very difficult to obtain. Pas-
these strong relationships, large-footprint, airborne scan- sive remote sensing tools such as the Thematic Mapper
ning lidar shows promise for characterizing stand struc- cannot provide detailed height, total biomass, or leaf bio-
ture for management and research purposes. Elsevier mass estimates beyond early stages of succession in for-
Science Inc., 1999 ests with high leaf area or biomass. Using Landsat TM

data for example, Cohen et al. (1995) could only
distinguish two structural classes for forests older than
80 years.
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be useful for small areas but are too time-consuming for 1979) corresponding to volumes of up to 2500 m3/ha, are
use over large areas. an ideal place for such a test.

Current methods of characterizing vertical canopy
structure over large areas include SAR (synthetic aper-

METHODSture radar) and lidar (light detection and ranging). SAR
offers promise for predicting low levels of forest biomass Study Area
and for mapping general forest types and tree species in The study was conducted in and near the H.J. Andrews
floristicly simple landscapes (Rignot et al., 1994). How- Experimental Forest, in the western Cascade Range, Or-
ever, SAR is insensitive to differences in forest biomass egon, USA. The study area is dominated by coniferous
above 150 Mg/ha, well below values for many tropical forest, primarily of Douglas-fir (Pseudotsuga menziesii
and temperate forests (Waring et al., 1995). (Mirbel) Franco) and western hemlock (Tsuga hetero-

A more promising method is airborne, scanning lidar phylla (Raf.) Sarg.) (Dyrness et al., 1974). Old-growth
which sends laser pulses toward the ground and mea- forests in the study area can be quite massive (500–1000
sures the return time for reflections off vegetation sur- Mg/ha aboveground live biomass, Grier and Logan, 1977)
faces and the ground (Flood and Gutelius, 1997; Lefsky, and tall (up to 80 m, Kuiper, 1988). Leaf area index
1997; Weishampel et al., 1996). This allows estimation of (LAI) values up to 8 m2/m2 have been reported for old-
vegetation height and other canopy-related characteris- growth forests in the study area (Marshall and Waring,
tics. The first lidars used small footprints, usually 1 m 1986). In addition to old-growth forest (greater than 200
diameter or smaller, and recorded reflections from a sin- years old), the study area also includes abundant mature
gle track along the flightpath (Aldred and Bonnor, 1985; forest (80–200 years old), as well as areas regrowing fol-
Nelson et al., 1984, 1988; Ritchie et al., 1993, 1992; lowing harvesting which began in the 1950s (Van Cleve
Weltz et al., 1994). Small-footprint lidar can provide ac- and Martin, 1991). The Andrews Experimental Forest
curate canopy height estimates in some cases, for exam- has been an intensive site for forestry, hydrology, and
ple in forests sufficiently sparse to allow identification of ecological research for nearly 50 years (Van Cleve and
individual trees (e.g., Jensen et al., 1987). Recent studies, Martin, 1991).
however, show that in denser forests small-footprint li-
dars tend to underestimate stand height (Nilsson, 1996; The SLICER Instrument
Naesset 1997a; though see “grid approach” in Naesset,

SLICER is a scanning, airborne lidar that transmits short1997a). The underestimates of canopy height by small-
(ca. 120 cm, 4 ns) pulses of near infrared (1064 nm) laserfootprint lidar may be due to failure to obtain reflections
light towards the ground using a laser transmitter specifi-from the ground in areas of dense canopy closure and
cally designed for surface lidar applications (Coyle andfailure to sample the tops of relatively broad trees (Har-
Blair, 1995; Coyle et al., 1995). Pulses are typically emit-ding et al., 1994). Recent NASA instruments (Blair et al.,
ted at a repetition rate of 80 Hz and a power of 0.7 mJ.1994; Harding et al., 1994) capture reflections over a
As a pulse encounters the top of the vegetation photonslarger footprint, about 10 m in diameter, resulting in
intercepted by canopy surfaces are scattered; photonsmore complete sampling of the canopy, even for dense
backscattered at nadir are collected by a receiving tele-canopies (Weishampel et al., 1996). These profiling lidars
scope in the aircraft. As the non-intercepted componenthave shown promise in estimating stand height, bole vol-
of the pulse proceeds down through the canopy, photonsume, woody biomass, and tree canopy cover.
are backscattered at every level at which they encounterThis article presents results from a field test of an
reflective surfaces. Finally, photons are usually reflectedairborne lidar called SLICER (Scanning Lidar Imager of
back to the collecting telescope from the ground in suffi-Canopies by Echo Recovery). SLICER uses a 10-m foot-
cient number to yield a detectable ground return signal.print and measures five adjacent, cross-track footprints
Received photons collected by the telescope are focusedalong the flightpath, thus scanning a swath 50 m wide.
on a silicon avalanche photodiode detector which con-SLICER evolved from a profiling system (Blair et al.,
verts input optical energy into an output voltage signal.1994) by incorporation of a galvanometer mechanism for
The round-trip travel time from transmission of the laserscanning the transmitted laser beam perpendicular to the
pulse to the first return of detector output voltage abovedirection of the flight path. Our goal is to evaluate the
a detection threshold is measured by a time interval unitutility of data from SLICER for estimating canopy height,
(TIU). The travel time is converted to distance based onstand biomass, foliage biomass, and other stand structural
the speed of light. The TIU utilizes a high-frequency os-characteristics. In particular, we wanted to test whether
cillator to achieve cm-level ranging accuracy. Upon re-we could resolve differences in these characteristics at
ception of the first detected return signal, the time his-high levels of total aboveground and foliage biomass. Co-
tory of detector output voltage, which is sampled usingnifer forests of the Pacific Northwest, with leaf areas in-
an analog-to-digital digitizer (LeCroy 6880B operating atdices over 10 m2/m2 (Marshall and Waring, 1986) and

live biomass over 1000 Mg/ha (Waring and Franklin, 1.35 Gsamp/s), is stored as a return waveform. The wave-
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form contains 600 samples of the detector output signal 25 SLICER footprints and was centered on the center
footprint. The main plot and 25 circular 10-m diameterat a sampling interval of 0.742 ns (i.e., 11 cm vertical
subplots were slope corrected (i.e., plots were laid outsampling). The waveform records 15 channels of instru-
using horizontal distances so that nominal plot areas arement noise occurring prior to reception of the first re-
equal to plot areas projected to the horizontal plane).turn above threshold, and 585 channels after the first re-
The subplots were distributed systematically throughoutturn, yielding a digitized height range of 65 m downward
the main plot in a 535 grid.from the canopy top.

The field crew first reconnoitered each candidateSLICER was flown in a twin engine Sabreliner T-39
plot to verify that it fit the selection criteria. They thenat about 5000 m above the ground for this study, yielding
established an approximate plot center and obtained alaser footprints nominally 10 m in diameter. Aircraft atti-
GPS fix. After differential correction in the laboratory oftude is provided by a ring-laser gyro inertial navigation
the GPS fix for the approximate plot center, the plotsystem. Aircraft position is determined by means of
center was repositioned as needed to place the center ofground and aircraft-mounted dual frequency GPS receiv-
the field plot at the coordinates of the target SLICERers from which a postflight kinematic trajectory is de-
footprint. The accuracy of matching field plot centersrived. Knowing the position (X, Y, Z) and attitude of the
with target SLICER footprints is estimated to be 5–20 m,aircraft and the round-trip time to each reflecting sur-
a combination of an estimated 5–10 m error in SLICERface, the horizontal position of the first reflecting surface
footprint location, and 5–10 m error in corrected GPSin each pulse is determined to within 5–10 m. Specific
location. Thus the field plots and sets of 25 SLICERdata collection lines were flown by means of a real-time
footprints overlap and comprise samples of the sameGPS navigation system which displays the aircraft’s posi-
stands, though not necessarily the exact same pieces oftion to the pilot relative to pre-programmed flight lines.
ground. The uncertainty in the degree of overlap be-Two sampling transects were flown across and be-
tween the SLICER footprints and the field plots intro-yond the Andrews Experimental Forest in 1995. The
duces presumably random errors into the estimated rela-maximum detectable tree height of 65 m prevented deri-
tionships between ground and SLICER data. Thevation of tree heights in a small percentage of laser foot-
magnitude of errors should be greatest for the old-prints that included taller trees.
growth plots, inasmuch as old-growth forests tend to be
more spatially heterogeneous than young and mature for-Field Sampling Design
ests in the Pacific Northwest (Kuiper, 1988; BradshawTo test the predictive power of SLICER over the full
and Spies, 1992).ranges of height, biomass, and foliage mass in the study

The intensity of field sampling was a function of thearea, ground plots were located in 1996 along the
type of stand sampled. On old-growth plots all treesSLICER transects to include sites ranging from those
greater than 1.37 m tall were measured. On other plotsdevoid of all but herbaceous vegetation to old-growth
where density of trees was high, all trees greater thanforest. Multiple plots were located in bare or herb-cov-
1.37 m tall were measured on selected subplots. Initially,ered areas (n52), shrub-covered areas (n53), young for-
tree diameters were measured on three or five subplots.est (20–80 years old, n57), mature forest (n55), and The field crew then estimated the number of additional

old-growth forest (n59). subplots needed to include at least 30 dominant and co-
To help choose and find potential plot locations, dominant trees [i.e., trees forming the main canopy

Arc/View was used to combine: locations of the SLICER (Avery and Burkhart, 1994)], and measured trees on five,
transects, a map of stand conditions (including establish- nine, or 13 subplots, regularly spaced to cover the full
ment year), a forest type classification (Cohen et al., extent of the plot.
1995), a false-color infrared Thematic Mapper image, For all measured trees, species, DBH (diameter at
and data layers of roads and streams. A total of 62 candi- 1.37 m above the ground), and crown ratio (estimated
date plots were identified from which 26 plots were se- proportion of tree height with live branches around at
lected. Plots were selected for sampling after field verifi- least 1/3 of the circumference of the bole) were re-
cation that they met the following criteria: capable of corded. To develop species-specific regression models of
supporting coniferous forest, only one predominant story height and sapwood thickness on DBH, intensive mea-
or age class, basal area of broad-leaved trees <10%, surements were taken on a subsample of trees. For each
slopes ,90% for crew safety concerns, and shrub un- tree species with more than 10 individuals on a given
derstory not heavy enough to obscure moosehorn densio- plot, 10 individuals were chosen spanning the range of
meter measurements. DBH on the plot. From each of these trees two cores

were taken for bark thickness and sapwood thickness,
Field Methods and total height was measured with a Suunto clinometer
At each selected location a 50350 m square plot was es- and distance measuring device. Use of height-DBH re-

gressions is a practical alternative to exhaustive heighttablished. Each plot was oriented so as to correspond to
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measurements for the dense coniferous forests of the Pa- a factor of 2 to approximately correct for an assumed
lower reflectivity at 1064 nm of the litter-covered groundcific Northwest (Garman et al., 1995); sampling con-

strained to include the entire range of DBH, rather than as compared to the canopy. Canopy closure is canopy re-
flection sum divided by the sum of canopy and groundto include a random sample of trees, ensures that the re-

sulting regression models can be applied to all trees in a reflection sums.
The assumption of uniform horizontal distribution ofstudy without extrapolation (e.g., Curtis and Marshall,

1986). foliage is not met in our conifer forests, because lower
foliage is often under higher foliage in the same crownTree canopy cover was estimated with the moose-

horn densiometer (Bunnell and Vales, 1990) at the cen- and gaps of various sizes extend to the ground or nearly
so. Thus CHP’s probably do not represent the true verti-ter of each of the 25 subplots. The moosehorn was used

because its narrow view angle approximates SLICER’s cal distribution of foliage in these stands. However, we
believe metrics derived from the CHP are potentiallynear-vertical sampling.

Shrubs, herbs, and trees less than 1.37 m tall were useful in predicting stand characteristics.
The lidar-derived metrics were averaged over allmeasured only if canopy cover by moosehorn was less

than 40%, which occurred on five plots. We reasoned footprints in a plot for comparison to field data. The
CHP’s for all footprints in a plot were aligned by theirthat understory total and leaf biomass would not be im-

portant to the total in stands with significant tree cover. ground returns and averaged. Median canopy height was
calculated from the mean CHP as the height at whichThis vegetation was measured as follows. On the five cor-

ner and center subplots cover of all vascular plant spe- half of the area under the CHP was above and half was
below. Quadratic mean canopy height (QMCH) was de-cies was estimated, including trees ,1.37 m tall. Cover

of species .1.37 m tall was recorded along 10-m-long fined as mean canopy height weighted by the square of
the distance from the ground, and was calculated fromline intercept transects through the subplot centers. In

addition, basal stem diameters of erect shrubs were mea- the mean CHP.
sured in a 50-cm-wide strip on the uphill side of the
line intercept. Calculation of Field-Based Stand Characteristics

From the field data, plot-level biomass was estimated us-
SLICER Data Analysis Methods ing allometric equations on DBH and sapwood cross-sec-

tional area for trees, and cover and basal diameter forInitial processing at NASA’s Goddard Space Flight Cen-
ter provided latitude, longitude, and elevation of the first herbs and shrubs. For trees, allometric equations on

DBH from Means et al. (1994) were used to computereturn (tree canopy top) and the return waveform. The
waveforms were further processed with software adapted most components of aboveground biomass. Foliage bio-

mass of trees was estimated from allometric equations onfrom a program written for SLICER data from eastern
deciduous forests (Lefsky, 1997). Several quantities de- sapwood cross-sectional area. The three predominant

tree species were Douglas-fir, western hemlock, andfined below were computed for each footprint.
The lidar-derived metrics were ground elevation, western redcedar (Thuja plicata Donn). For Douglas-fir

and western hemlock, sapwood cross-sectional area ofcanopy height, canopy height profile, median canopy
height, canopy reflection sum, ground reflection sum, cored trees was first regressed on DBH separately for

the two species (Douglas-fir: r250.80, n5221; westernand canopy closure. Ground elevation is the elevation of
the peak or mode of the last return in the waveform, hemlock: r250.85, n5111). The resulting models were

used to estimate sapwood cross-sectional area for allinferred to be a reflection from the ground. The ground
returns on several footprints on old-growth plots had to trees. Tree foliage biomass was then calculated using

published sapwood area to leaf area ratios (Waring et al.,be adjusted with reference to adjacent waveforms due to
complete ground shading by heavy overstory or loss of 1982) and specific leaf areas (Gholz et al., 1976; Waring

et al., 1982). For small trees (i.e., Douglas-firs ,13 cmpart or all of the ground return because of the termina-
tion of waveform recording at 65 m from the first return. DBH and western hemlock ,14 cm DBH), foliage mass

was estimated from allometric equations on DBH (GholzCanopy height is the distance from the first return to the
ground. Canopy height profile (CHP) was calculated by et al., 1979; Helgerson et al., 1988), since there was an

inadequate sample of small trees that had been cored.correcting the returned energy profile for shading of
lower foliage by higher foliage using a modified exponen- Estimation of foliage mass of western redcedar was

based on a published data set of sapwood thickness andtial transformation (MacArthur and Horn, 1969; Lefsky,
1997), which assumes uniform horizontal distribution of DBH (Lassen and Okkonen, 1969), a published allomet-

ric equation for foliage mass as a function of DBHfoliage. Canopy reflection sum is the sum of the portion
of the waveform return reflected from the canopy. (Gholz et al., 1979), and western redcedars on our plots

for which sapwood thickness and DBH were measured.Ground reflection sum is the sum of the portion of the
waveform return reflected from the ground multiplied by For the range of DBH used in constructing the allomet-



302 Means et al.

Table 1. Characteristics of the Field Plots Based on Field Data, Summarized by Seral Stagea

Tree Basal Tree Foliage
Mean DBH Mean Height Area Biomass Total Above-Ground

Seral Stageb Nc Trees per ha (cm) (m)d (m2/ha) (Mg/ha) Biomass (Mg/ha)

B 2 0 n/a n/a 0 0 2 (2)
S 3 1282 (1024) 3 (2) 4 (2) 2 (2) 1 (1) 15 (10)
Y 7 1975 (942) 12 (5) 17 (2) 32 (9) 9 (2) 213 (67)
M 5 948 (737) 32 (19) 33 (6) 57 (13) 10 (1) 493 (172)
O 9 689 (286) 29 (13) 43 (6) 92 (20) 12 (3) 965 (174)

a Values are means, with standard deviations in parentheses.
b B5bare, S5shrub, Y5young forest, M5mature forest, O5old-growth forest.
c Number of plots representing the seral stage.
d Mean of predicted heights of codominant and dominant trees.

ric equation, foliage mass was computed from the allo- range of height and biomass values (Table 1). The high-
metric equation and sapwood area was calculated from est stand biomass (1329 Mg/ha), foliage biomass (17.2
the published data set. A mean ratio of foliage mass to Mg/ha), and basal area (132 m2/ha) are among the high-
sapwood area was then computed, weighted by the num- est found in a region known for its high biomass values
ber of trees in different size classes in the published data (Means and Helm, 1985).
set. Finally, using the trees with sapwood measurements, Douglas-fir was the most dominant and ubiquitous
predicted foliage mass (i.e., observed sapwood area times tree species, averaging 76% of basal area (range 38–
mean foliage mass:sapwood area ratio) was regressed on 100%) on plots with trees. Western hemlock was the sec-
DBH (r250.85, n551). From this model, foliage mass ond most ubiquitous species, occurring on 21 of 24 plots
was estimated from DBH for all western red cedars >16 with trees and accounting for an average of 18% of tree
cm DBH. For smaller trees foliage mass was estimated basal area on those plots. Western red cedar, golden
directly from the allometric equation, since the sample chinkapin (Castanopis chryosphylla (Dougl.) DC), west-
of small trees that had been cored was insufficient, and ern dogwood (Cornus nuttalli Aud.), and western yew
the regression model underpredicted foliage mass for (Taxus brevifolia Nutt.) occurred on about half of the
very small trees. plots with trees. Nine other tree species occurred less

Mean canopy height was calculated using species- frequently.
specific height–DBH relationships derived from measured It was possible to predict a wide variety of stand
heights. For western hemlock and western redcedar sep- structural characteristics from SLICER data (Table 2).
arate regressions of height on DBH were developed us- Mean SLICER-derived height was a good predictor of
ing data from all plots for dominant and codominant mean canopy height through the full range of heights ob-
trees (western hemlock: r250.75, n557; western red ce- served (Fig. 1, Eq. (1) in Table 2). The slope was signifi-
dar: r250.60, n519). For Douglas-fir three separate re- cantly less than 1.0, indicating the SLICER-derived
gressions were developed for trees in young, mature, and height is consistently greater than the field-based height.
old-growth plots (young: r250.74, n573; mature: r25 The intercept is close to zero and not significant (p50.85),
0.78, n534; old-growth: r250.57, n577). For each plot indicating that the model is realistic for short stands. No
the heights of dominant and codominant trees were pre- other candidate predictor was significant when added to
dicted using the regression models, and then averaged. the regression model.
Plot canopy cover was the mean of the 25 moosehorn Basal areas were quite high in old-growth and ma-
readings. ture stands (Table 1). There was a strong relationship be-

tween basal area and SLICER-derived height (Table 2,Statistical Methods
Eq. (2)), although there is more scatter for greaterRelationships between plot-level SLICER metrics and
heights. The best two-predictor model includes canopystand characteristics were investigated with interactive
reflection sum as a predictor (Table 2, Eq. (3)). At ad-graphical and regression techniques (SAS, 1996). Trans-
vanced ages, height growth rate decreases greatly (King,formations of independent variables included square root,
1966; Means and Helm, 1985), and thus height losessquare, standard deviation, and coefficient of variation
some of its power as a predictor of basal area. Canopyamong footprints on a plot. Logarithmic transformations
reflection sum presumably serves as a measure of theof dependent variables were also explored.
quantity of foliage (although woody canopy elements also
reflect the laser light), and so helps identify the stands

RESULTS with higher basal area.
Total stand biomass was closely related to the squareTwenty-six plots were located in and near the Andrews

Experimental Forest. The sampled stands covered a wide of SLICER-derived canopy height (Fig. 2, Eq. (5) in Ta-
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Table 2. Relationships between Ground-Based Stand Structural Characteristics (Dependent Variables) and
SLICER–Derived Metrics from Regression Analysisa

Eq. No. Ground datab Predictive model based on SLICER measurementsc r2 RMSE

1 Ht (m) 0.310.91*LHt (Fig. 1) 0.95 3.8
2 BA (m2/ha) 5.311.97*LHt 0.88 13
3 BA 1.110.0279*LHt2113.9*CanRef2 0.92 11
4 BA 1.110.0411*LHt2113.5*CanRef220.0389*QMCH2 0.96 9
5 TotBio (Mg/ha) 55.10.385*LHt2 (Fig. 2) 0.90 132
6 TotBio 48.10.576*LHt220.573*QMCH2 0.94 103
7 TotBio 223.10.539*LHt220.553*QMCH2169.4*CanRef2 0.96 88
8 FolBio (Mg/ha) 20.6410.0026*CanRef (Fig. 3) 0.84 2.0
9 FolBiod 12.720.0021*GndRef 0.67 1.3

10 FolBioe 214.210.00095*CanRef 0.81 1.5
11 CanCov 0.1410.995*CanClos 0.94 0.08
12 CanCov f 0.5810.38*CanClos2 0.53 0.06
13 CanCov f 20.6810.47*CanClos220.040*MedCanHt0.5 0.69 0.05

a Sample size526 except as noted.
b Ht5mean canopy height, BA5basal area, TotBio5total above ground stand biomass, FolBio5foliage biomass, CanCov5canopy cover (range 0–1).
c LHt5mean canopy height derived from lidar data, CanRef5canopy reflection sum, QMCH5quadratic mean canopy height, CanClos5canopy

closure, GndRef5ground reflection sum, MedCanHt5median canopy height.
d Plots with trees, with LHt<35 m. N510.
e Plots with trees, with LHt.35 m. N511.
f Plots with trees. N521.

ble 2). The best two- and three-predictor models (Eqs. were investigated. Different models worked better for
plots with mean SLICER-derived height <35 m and for(6) and (7), respectively, in Table 2), gave significantly

better fits. These relationships extended to stands with plots with mean SLICER-derived height .35 m (Table
2, Eqs. (9) and (10)). Using two separate models for allvery high biomass (1100–1300 Mg/ha), although there is

more variability not accounted for by the models for plots with trees gave a significantly better fit (a50.05)
than using one model.such high levels of biomass.

Tree foliage biomass was best predicted by canopy Ground-based canopy cover of trees was closely re-
lated to SLICER-derived canopy closure (Table 2, Eq.reflection sum (Eq. (8) in Table 2, Fig. 3). Since most

of this relationship was caused by the difference between (11)). The Y-axis intercept was not significantly different
from 0.0, and the slope was not significantly differentthe plots with no trees (bare and shrub) and those with

trees (young, mature and old-growth), models for tree from 1.0. Since most of the strength of this relationship
was caused by the difference between the plots withoutfoliage biomass in the subset of plots with trees (n521)
tree cover (bare and shrub) and those with (young, ma-
ture, and old-growth), models for tree canopy cover in

Figure 1. Mean height of dominant and codominant the subset of plots with trees were investigated. The best
trees estimated from field data versus SLICER-derived

single-predictor relationship found was a function ofheight. The regression line is Eq. (1) in Table 2.
SLICER canopy closure (Table 2, Eq. (12)), and a two-
predictor model improved the r2 to 0.69. Efforts to build
different models for subsets of the plots did not improve
the fit.

DISCUSSION

Prediction of Stand Structure
Data from SLICER can be used to accurately predict
important stand structural characteristics in the tall co-
niferous forests of the Pacific Northwest. This ability ex-
tends to very high values of stand and foliage biomass.

The relationship between mean SLICER height and
mean height of dominant and codominant trees esti-
mated from field data was strong (Fig. 1). However, the
slope was significantly less than 1.0, indicating that
SLICER-derived heights were greater than field-derived
heights. Part of this discrepancy is likely to be due to a



304 Means et al.

methodological difference between canopy height mea- ter fit for plots with high basal areas. In this model can-
opy reflection sum can be interpreted as an index ofsurement with SLICER versus field observation. Canopy

height from SLICER was determined for each plot by stocking, or the extent to which the canopy growing
space is occupied by trees.averaging the maximum canopy height in each of 25

footprints. From field data, stand height was computed The strong relationship between stand height and
stand biomass (Fig. 2) also occurs in yield tables (McAr-as the average height of all trees that were judged to

compose the main canopy layer (i.e., dominant and co- dle et al., 1961). The mature stands have relatively low
volumes for their heights compared to the old-growthdominant trees). Given the density of dominant and

codominant trees, this estimate from the field data in- stands and thus contribute to error in the one-parameter
model. These stands also have foliage mostly in the up-cluded many trees which would have been too short to

produce the first return in a SLICER footprint. For per half of the canopy, and so have relatively high
QMCH values. The inclusion of QMCH with a negativeexample, in the 13 plots in which all trees were mea-

sured, the median sample size of tree heights used to coefficient in the two-parameter model allows this source
of variation to be explained.estimate canopy height was 41. Since there is consider-

able within-stand variability in heights of dominant and The ability of canopy reflection sum to predict foliage
biomass (Fig. 3) is also as expected. It is surprising, how-codominant trees in coniferous forests in the Pacific

Northwest (see, e.g., Kuiper, 1988), the relatively large ever, that canopy reflection sum gives a better fit than
SLICER-derived canopy closure because total energysample sizes used to estimate canopy height from the

field data depressed those estimates relative to the esti- varies from pulse to pulse, and this variation is removed
mates derived from SLICER. An artifact of height mea- from canopy closure by dividing by total returned en-
surement with SLICER may have made a smaller contri- ergy. The relatively poor explanatory power of SLICER-
bution to the discrepancy between the two canopy height derived canopy closure may be caused by variability in
estimates. The tree producing the first return in a given ground reflectivity. Variability in proportions of the ground
footprint is most likely to be on the upslope side of the covered by vegetation versus litter could alter total re-
footprint, so that its height would be overestimated in turned energy inasmuch as vegetation has about twice
the SLICER data by the difference in elevation between the reflectivity of litter.
its base and the peak of the ground return. Interestingly, the relationship between SLICER-

The strong relationship between SLICER height and derived and field measures of the same canopy feature,
stand basal area is not surprising because forest yield ta- that is, canopy closure, was not as strong as that between
bles, for example, for Douglas-fir (McArdle et al., 1961) biomass and SLICER-derived canopy metrics. Concep-
consistently show strong relationships between height tually, the moosehorn densiometer views the canopy
and basal area. Inclusion of SLICER height and canopy
reflection sum in the two-parameter model allows a bet-

Figure 3. Tree foliage biomass as estimated from field
data versus canopy reflection sum. The regression line is
Eq. (8) in Table 2.Figure 2. Total aboveground biomass as estimated from field

data versus the square of SLICER-derived height. The re-
gression line is Eq. (5) in Table 2.
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from below at the same angle as SLICER does from maximum detectable tree height in this study to 65 m
can be altered so that the maximum detectable treeabove. However, as computed in this study, canopy clo-

sure is a function of canopy reflection sum, that is, en- height exceeds 100 m (Blair et al., 1994).
ergy reflected from all layers in the canopy. In contrast,
moosehorn measurements take into account only layers Comparison to Small-Footprint Lidar
of foliage closest to the observer. Although large- and small-footprint lidar overlap some-

what in their capabilities for measuring forest structure,
Potential Uses of Large-Footprint Scanning there are significant differences between the two types
Airborne Lidar of lidar in technical features, data obtained, and availabil-

ity of data.Large-footprint scanning airborne lidar has important po-
tential uses in forested landscapes. This study indicates Both small- and large-footprint lidars show promise

for estimating stand height and volume or biomass. Al-that large-footprint scanning airborne lidar can accurately
map biomass and carbon stores and so can be used to though small-footprint lidars tend to underestimate can-

opy height, this problem may be alleviated, at least forvalidate landscape simulation models (Cohen et al.,
1992). This study also shows that large-footprint lidar can relatively short-statured forests, by selecting the largest

height estimate from all laser pulses corresponding to aestimate accurately height and foliage biomass, so that
it can help map these features for initialization of such fixed ground area (Naesset, 1997a), or by employing so-

phisticated algorithms for analysis of waveforms for thoselandscape simulation models. Current approaches to esti-
mating carbon balances of the heavily forested Pacific instruments capable of capturing complete waveforms

(Nilsson, 1996). The magnitude of bias in lidar height es-Northwest rely on coarse vegetation classes to estimate
current height and biomass (Cohen et al., 1996) that timates in this study (mean512.3 m) is similar to those

reported for small-footprint lidars (i.e., 25.5 m to 11.9 mcould be improved significantly with lidar data.
SLICER’s ability to characterize canopy structure in in Nilsson, 1996, and Naesset, 1997a). The variability of

differences between tree heights estimated with lidarthree dimensions makes scanning airborne lidar a logical
choice to map arboreal habitat. Views of three-dimen- and measured from the ground was greater in this study

(s.d.54.0 m) than reported by Naesset (1997a) for small-sional features and patterns of canopies have been im-
possible to obtain over large areas. Primarily for this footprint lidar (s.d.51.1–1.6 m). However, this study in-

cluded a range of heights that is about three times asreason, although much is known about response of im-
portant arboreal animals such as the spotted owl and great as the range in the study reported by Naesset. Fur-

thermore, comparisons between SLICER and the small-marbled murrelet to two-dimensional habitat patterns,
little is known about their response to three-dimensional footprint lidars concern not only different types of lidar

technology but also different methods of summarizingpatterns. Lidar has the potential to help fill this gap.
Data from scanning airborne lidars can be used to ground data. As described above, the overestimate of

height in this study might be alleviated by averagingcharacterize tree height, tree diameter, and the shade
environment of riparian zones, since tree height can be ground-measured heights over a smaller number of trees

more likely to correspond to the tallest individuals re-related to tree diameter (Garman et al., 1995) They can
characterize canopy fuels and provide detailed (10 m) to- sponsible for the first returns in SLICER waveforms.

The coefficients of determination for total stand biomasspography needed to simulate crown fires, which are the
most difficult wildfires to understand (Rothermel, 1991). in this study (i.e., 0.9–0.96) are greater than recently re-

ported coefficients of determination for volume predic-Airborne lidar data are complementary to passive re-
mote sensing data, such as Landsat Thematic Mapper. tion from small-footprint lidar (i.e., 0.47–0.89 in Nilsson,

1996 and Naesset, 1997b).TM can be used to distinguish bare, shrub, and early
tree stages of succession well (Cohen et al., 1995; Cohen Important technical differences distinguish large-

footprint and small-footprint lidars in their currentlyand Spies, 1992), but large-footprint airborne lidars are
unlikely to be able to separate these on steep slopes due most common implementations. Small-footprint airborne

lidars typically operate in the near infrared at 300–7000to spreading of the ground return. Lidar is uniquely ca-
pable of characterizing taller vegetation with higher total laser pulses per second (Flood and Gutelius, 1997) and

scan swath widths of up to 730 m corresponding to off-and foliage biomass where relationships between pas-
sively-sensed spectral data and biomass and foliage satu- nadir scan angles up to 208 (Wagner, 1995). With differ-

entially corrected GPS and either a stabilized aircraftrate and passive remote sensing provides relatively little
discriminating ability. platform or an aircraft with an inertial navigation system,

small-footprint lidars generate data point locations withIn future applications of large-footprint lidar over
larger areas the manual adjustments of the ground re- an accuracy of 15 cm in three dimensions under optimal

conditions (Wagner, 1995; Flood and Gutelius, 1997).turns for several waveforms in this study are not likely
to be necessary. The instrument settings that limited the Small-footprint lidars can be programmed to collect the
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first return (reflection) or the last return (Wagner, 1995),
We are grateful to Bob Burns, Barry Coyle, Earl Frederick,but most do not provide continuous return waveforms. David Pierce, George Postel, David Rabine, and Virgil Rabine

A small-footprint lidar with the potential to record entire for their invaluable efforts in acquiring the SLICER data, and
waveforms has been tested for measuring tree heights to Kathy Still for producing the geolocated SLICER products.

Development of SLICER was funded by NASA’s Solid Earthand stand volume (Nilsson, 1996). However, data storage
Program and Goddard’s Directors Discretionary Fund. Acquisi-limitations prevented recording of complete waveforms
tion of the SLICER data used in this study was supported byfor most of its measurements. Though published studies NASA’s Terrestrial Ecology Program. To Scott Miller, Crystal

are not available on performance of small-footprint lidars Dickard, Becky Fasth, Matthew Goslin, and Kerry Halligan, we
in tall, dense, coniferous forests with high leaf areas, we are grateful for collecting field data under difficult conditions.

We thank also two anonymous reviewers for many constructiveanticipate that their canopy penetration may be limited
comments on the manuscript. This work was supported by theat higher scan angles. This could limit effective swath
National Science Foundation (Award No. DEB-9011663, Amend-width for some purposes. However, given the positive re- ment No. 11).

sults for estimating stand height and volume cited above,
study of small-footprint lidar in tall-coniferous forest is
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